Quantum resonances and ratchets in free-falling frames

Itzhack Dana and Vladislav Roitberg

Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Received 27 March 2007; published 13 July 2007)

Quantum resonance (QR) is defined in the free-falling frame of the quantum kicked particle subjected to gravity. The general QR conditions are derived. They imply the rationality of the gravity parameter η , the kicking-period parameter $\tau/(2\pi)$, and the quasimomentum β . Exact results are obtained concerning wave-packet evolution for arbitrary periodic kicking potentials in the case of integer $\tau/(2\pi)$ (the main QRs). It is shown that a quantum ratchet generally arises in this case for resonant β . The noninertial nature of the free-falling frame affects the ratchet by effectively changing the kicking potential to one depending on (β, η) . For a simple class of initial wave packets, it is explicitly shown that the ratchet characteristics are determined to a large extent by symmetry properties and by number-theoretical features of η .

DOI: 10.1103/PhysRevE.76.015201 PACS number(s): 05.45.Mt, 05.45.Ac, 03.65.—w, 05.60.Gg

The quantum kicked particle in the presence of gravity has attracted much interest recently [1–7] following the experimental discovery of the "quantum accelerator modes" (QAMs) of freely falling atoms periodically kicked by pulses [1]. The QAMs were observed in the free-falling frame in a strong quantum regime and their explanation was at the focus of all the theoretical studies [4–7] which we briefly summarize here. Using dimensionless quantities and notation introduced in Ref. [4], the general Hamiltonian for the system is

$$\hat{H} = \frac{\hat{p}^2}{2} - \frac{\eta}{\tau} \hat{x} + kV(\hat{x}) \sum_{t} \delta(t' - t\tau), \qquad (1)$$

where (\hat{p}, \hat{x}) are momentum and position operators, η is proportional to the gravity force (in the direction of the positive x axis), τ is the kicking period, k is a nonintegrability parameter, V(x) is a periodic potential, and t' and t are the continuous and "integer" times. The units are chosen so that the particle mass is 1, \hbar =1, and the period of V(x) is 2π ; the standard potential V(x)=cos(x) was used in all works. The transformation to the free-falling frame is accomplished by applying the gauge transformation $\exp(i\eta \hat{x}t'/\tau)$ to the Schrödinger equation for (1) [4]. One then finds that the Hamiltonian in this frame is

$$\hat{H}_{\rm f} = \frac{(\hat{p} + \eta t'/\tau)^2}{2} + kV(\hat{x}) \sum_t \delta(t' - t\tau). \tag{2}$$

Unlike (1), \hat{H}_f in Eq. (2) is translationally invariant in \hat{x} , implying the conservation of a quasimomentum β (the "fractional part" of \hat{p} , $0 \le \beta < 1$) in the quantum evolution under \hat{H}_f ; at fixed β , one can consider x as an angle θ and write $\hat{p} = \hat{N} + \beta$, where $\hat{N} = -id/d\theta$ is an angular-momentum operator with integer eigenvalues n (see more details in note [8]). Then, (2) becomes the Hamiltonian of a kicked-rotor system in the free-falling frame. The one-period evolution operator, from $t' = t\tau + 0$ to $t' = (t+1)\tau + 0$, is given by

$$\hat{U}_{\beta}(t) = \exp[-ikV(\hat{\theta})] \exp[-i(\tau/2)(\hat{N} + \beta + \eta t + \eta/2)^2], \quad (3)$$

up to an irrelevant constant phase factor. Now, the value of $\tau=2\pi l_0$, where l_0 is a positive integer, corresponds to the

main quantum resonances (QRs) of (3) in the absence of gravity $(\eta=0)$ [9–11]. It was shown in Ref. [4] that $\tau=2\pi l_0+\epsilon$ defines, for sufficiently small $\epsilon\neq 0$ and for any η , a "quasiclassical" regime in which ϵ plays the role of a fictitious Planck's constant. In this regime, the quantum evolution under (3) can be approximately described by a classical map. Then, a wave packet initially trapped in an accelerator-mode island of this map "accelerates," i.e., the expectation value $\langle \hat{N} \rangle$ of \hat{N} in the wave packet grows linearly in time; this is a QAM. The experimentally observed robustness of QAMs under variations of τ near $\tau=2\pi l_0$ was explained, in the framework of the quasiclassical approximation, as a "mode-locking" phenomenon [5–7] (see also the conclusion). Theoretical predictions were verified by several experiments [3,5].

In this paper, the system (3) with arbitrary periodic potential $V(\theta)$ is systematically approached in a different way. The concept of QR is introduced for this system $(\eta \neq 0)$ and exact results are derived concerning its quantum-resonant dynamics. A consistent definition of QR for $\eta \neq 0$ requires the time-dependent operator (3) to be essentially periodic in twith some finite period T; QR can then be defined on the basis of the evolution operator in T kicks. The general conditions for QR, given by Eqs. (5)–(7) below, imply the rationality of η , $\tau/(2\pi)$, and β . Exact results for wave-packet evolution under (3) are obtained in the case of integer $\tau/(2\pi)$ (main QRs). We find that in this case the noninertial nature of the free-falling frame effectively changes $V(\theta)$ to a potential $V_{\beta,\eta}(\theta)$. We then show that a linear growth of $\langle \hat{N} \rangle$ in time generally occurs for resonant quasimomentum (7). This is a purely quantum "ratchet" effect [12,13], a directed current without a biased force, caused, e.g., by some asymmetry in the system. QR ratchets have been investigated recently [13] for the usual kicked rotor ($\beta = \eta = 0$). We emphasize that for $\eta \neq 0$ there is no biased force in the system (2): gravity is classically not felt in the free-falling frame. In fact, (2) satisfies the conditions for a ratchet Hamiltonian [12] but the kinetic energy is time dependent, reflecting the noninertial nature of the free-falling frame. It is this time dependence that affects the QR ratchet through the effective potential $V_{\beta,\eta}(\theta)$. In particular, the ratchet current vanishes if $V_{\beta,\eta}(\theta)$ and the initial wave packet have a common point symmetry. For a simple class of initial wave packets, we derive closed explicit results for the linear-growth coefficient and we show that the ratchet characteristics are determined to a large extent by symmetry properties and by number-theoretical features of η .

QR in free-falling frames. QR is the quadratic growth of the kinetic-energy expectation value in time, due to the translational invariance of some basic evolution operator \hat{U} for the system in phase-space; this invariance leads to a band quasienergy spectrum of \hat{U} and thus to QR. A basic operator \hat{U} for (3) can be consistently defined only if $\hat{U}_{\beta}(t+T) = \hat{U}_{\beta}(t)$ for some period T. Then $\hat{U} = \hat{U}_{\beta,T}(t)$, where

$$\hat{U}_{\beta,T}(t) = \hat{U}_{\beta}(t+T-1)\cdots\hat{U}_{\beta}(t+1)\hat{U}_{\beta}(t) \tag{4}$$

is the evolution operator in T kicks, and the operators $\hat{U}_{\beta,T}(t)$ for all t are equivalent (similar), due to $\hat{U}_{\beta,T}(t+1) = \hat{U}_{\beta}(t)\hat{U}_{\beta,T}(t)\hat{U}_{\beta}^{-1}(t)$. This allows one to associate with $\hat{U}_{\beta,T}(t)$ a meaningful (essentially t-independent) quasienergy problem. To derive explicit conditions for $\hat{U}_{\beta}(t+T) = \hat{U}_{\beta}(t)$, one must exploit the fact that $\hat{U}_{\beta}(t)$ is defined up to an arbitrary, physically irrelevant phase factor which may depend only on t. We thus replace $\hat{U}_{\beta}(t)$ by $\hat{U}'_{\beta}(t) = \exp(ia_1t + ia_2t^2)\hat{U}_{\beta}(t)$, where a_1 and a_2 are constants to be determined. Using Eq. (3) and the fact that \hat{N} has integer eigenvalues, we easily get from $\hat{U}'_{\beta}(t+T) = \hat{U}'_{\beta}(t)$ that $a_1 = \tau \eta(\beta + \eta/2)$, $a_2 = \tau \eta^2/2$, and

$$\Omega \equiv \frac{\tau \eta}{2\pi} = \frac{w}{T},\tag{5}$$

where w is some integer. Equation (5), i.e., the rationality of Ω , is the only physically relevant condition for the existence of a basic operator $\hat{U}_{\beta,T}(t)$. We shall assume that (w,T) are coprime, so that T is the smallest period for given rational value of Ω .

We now require $\hat{U}_{\beta,T}(t)$ to satisfy the basic QR condition for kicked-rotor systems [10,14,15], i.e., to be invariant under translations $\hat{T}_q = \exp(-iq\hat{\theta})$ by q (an integer) in the angular momentum \hat{N} : $[\hat{U}_{\beta,T}(t),\hat{T}_q]=0$. In the last relation, we can neglect, of course, any t-dependent phase factor attached to $\hat{U}_{\beta}(t)$ (see above) and just use the definition (4) of $\hat{U}_{\beta,T}(t)$ with $\hat{U}_{\beta}(t)$ given by Eq. (3). Using also Eq. (5) and, again, the fact that \hat{N} has integer eigenvalues, we find after a straightforward calculation that $[\hat{U}_{\beta,T}(t),\hat{T}_q]=0$ implies that

$$\frac{\tau}{2\pi} = \frac{l}{q},\tag{6}$$

$$\beta = \frac{r}{lT} - \frac{q}{2} - \frac{qw}{2l} \mod(1), \tag{7}$$

where l and r are integers. The QR conditions (6) and (7) can be analyzed as in the η =0 case [10]. Assuming, for definiteness and without loss of generality, that l and q are positive, we write l= gl_0 and q= gq_0 , where l_0 and q_0 are coprime

positive integers and g is the greatest common factor of (l,q). It is then clear that already at fixed $\tau/(2\pi) = l_0/q_0$ a resonant quasimomentum (7) can take *any* rational value β_r in [0,1); this is because g can be always chosen so that $r = [\beta_r + gq_0/2 + wq_0/(2l_0)]gl_0T$ is integer. For given $\beta = \beta_r$, we shall choose g as the smallest positive integer satisfying the latter requirement, so as to yield the minimal values of $l = gl_0$ and $q = gq_0$. We denote β_r by $\beta_{r,g}$, where the integer r above labels all the different values of β_r for given minimal g.

The quasienergy states $\phi(\theta)$ for $\beta = \beta_{r,g}$ are the simultaneous eigenstates of $\hat{U}_{\beta,T}(t)$ and \hat{T}_q : $\hat{U}_{\beta,T}(t)\phi(\theta) = \exp(-i\omega)\phi(\theta)$, $\hat{T}_q\phi(\theta) = \exp(-iq\alpha)\phi(\theta)$, where ω is the quasienergy and α is a "quasiangle," $0 \le \alpha < 2\pi/q$. Using standard methods [14,15], it is easy to show that at fixed α one generally has q quasienergy levels $\omega_b(\alpha,\beta)$, $b = 0, \ldots, q-1$; as α is varied continuously, these q levels typically "broaden" into q distinct bands (having nonzero width). This leads to QR, i.e., the asymptotic behavior $\langle \psi_{vT}|\hat{N}^2|\psi_{vT}\rangle \sim 2D(vT)^2$; here v is a large integer, $\psi_{vT}(\theta) = \hat{U}_{\beta,T}^v(0)\psi_0(\theta)$ is any evolving wave packet, and D is some coefficient.

Case of main QRs. From now on, we shall focus on the case of $\tau = 2\pi l_0$ ($q_0 = 1$), the main QRs. The quantum evolution of wave packets under (3) can be exactly calculated in this case for arbitrary values of η and β , i.e., not just for the QR values determined by Eqs. (5) and (7). In fact, since \hat{N} has integer eigenvalues, the relation $\exp(-i\pi l_0 \hat{N}^2) = \exp(-i\pi l_0 \hat{N})$ holds, so that Eq. (3) can be expressed for $\tau = 2\pi l_0$ as follows:

$$\hat{U}_{\beta}(t) = \exp[-ikV(\hat{\theta})] \exp[-i(\tau_{\beta} + \pi l_0 \eta + 2\pi l_0 \eta t)\hat{N}], \quad (8)$$

where $\tau_{\beta} = \pi l_0(2\beta + 1)$ and an irrelevant phase factor has been neglected. We note that the second exponential operator in Eq. (8) is just a shift in θ . Thus the result of successive applications of (8) on an initial wave packet $\psi_0(\theta)$ can be written in a closed form:

$$\psi_{t}(\theta) = \hat{U}_{\beta}(t-1)\cdots\hat{U}_{\beta}(1)\hat{U}_{\beta}(0)\psi_{0}(\theta)$$

$$= \exp[-ik\overline{V}_{\beta,\eta,t}(\theta)]\psi_{0}(\theta - \tau_{\beta}t - \pi l_{0}\eta t^{2}), \qquad (9)$$

where

$$\bar{V}_{\beta,\eta,t}(\theta) = \sum_{s=0}^{t-1} V(\theta - \tau_{\beta}s - 2\pi l_0 \eta t s + \pi l_0 \eta s^2).$$
 (10)

More explicit expressions for Eqs. (9) and (10) can be obtained for $\eta = w/(l_0T)$, i.e., the values of η corresponding to the main QRs ($\tau = 2\pi l_0$) by Eq. (5). Let us leave β arbitrary for the moment and choose the time t in a natural way as a multiple v of the basic period T, t = vT. Then, writing s = s' + v'T, with $s' = 0, \ldots, T-1$ and $v' = 0, \ldots, v-1$, the sum in Eq. (10) can be decomposed into two sums over s' and v'. Using also the Fourier expansion

$$V(\theta) = \sum_{m} V_{m} \exp(-im\theta), \qquad (11)$$

we find from Eqs. (9) and (10) with $\eta = w/(l_0T)$ that

$$\psi_{vT}(\theta) = \exp[-ik\bar{V}_{\beta,\eta,vT}(\theta)]\psi_0(\theta - \tau_{\beta,w}vT), \qquad (12)$$

where $\tau_{\beta,w} = \tau_{\beta} + \pi w = \pi (2l_0\beta + l_0 + w)$ and

$$\bar{V}_{\beta,\eta,\upsilon T}(\theta) = \sum_{m} V_{m} W_{m,\beta,\eta} \frac{\sin(m\tau_{\beta,w}\upsilon T/2)}{\sin(m\tau_{\beta,w}T/2)} \times e^{im(\upsilon-1)\tau_{\beta,w}T/2} \exp(-im\theta).$$
(13)

Here

$$W_{m,\beta,\eta} = \sum_{s=0}^{T-1} \exp[im(\tau_{\beta}s - \pi w s^2/T)]$$
 (14)

is a "form factor" reflecting the noninertial nature of the free-falling frame, i.e., the time dependence of the kinetic energy in Eq. (2), in one period T. This factor, which is a generalized Gauss sum [6,16], effectively changes V_m in Eq. (13) to $V_m W_{m,\beta,\eta}$ which may be considered as the harmonics of a potential $V_{\beta,\eta}(\theta) = \sum_m V_m W_{m,\beta,\eta} \exp(-im\theta)$. For T=1, corresponding to $\eta = w/l_0$ (and, of course, also to $\eta = 0$), $W_{m,\beta,\eta} = 1$ and $V_{\beta,\eta}(\theta) = V(\theta)$. Then, the only effect of gravity on Eq. (12) is through the quantity $\tau_{\beta,w}$.

QR ratchets. The general QR behavior $\langle \psi_{vT} | \hat{N}^2 | \psi_{vT} \rangle \sim 2D(vT)^2$ for resonant $\beta = \beta_{r,g}$ (see above) suggests that a quantum-ratchet effect, i.e., a linear growth of $\langle \hat{N} \rangle_{vT} \equiv \langle \psi_{vT} | \hat{N} | \psi_{vT} \rangle$ under the evolution (12), may also occur for $\beta = \beta_{r,g}$ and sufficiently large v:

$$\langle \hat{N} \rangle_{vT} \approx \langle \hat{N} \rangle_0 + RvT,$$
 (15)

where R is some nonzero coefficient. We now show that this is indeed the case for general potentials (11) and initial wave packets $\psi_0(\theta)$. At the same time, a formula for R is derived.

We start from the general expansion

$$|\psi_0(\theta)|^2 = \frac{1}{2\pi} \sum_m C(m) \exp(im\theta), \qquad (16)$$

where $C(m) = \sum_n \tilde{\psi}_0(m+n) \tilde{\psi}_0^*(n)$ are correlations of the initial wave packet in its angular-momentum representation $\tilde{\psi}_0(n)$. Using Eqs. (12), (13), and (16), we get

$$\langle \hat{N} \rangle_{vT} = -i \int_{0}^{2\pi} d\theta \psi_{vT}^{*}(\theta) \frac{d\psi_{vT}(\theta)}{d\theta}$$

$$= \langle \hat{N} \rangle_{0} + ik \sum_{m \neq 0} mV_{m} W_{m,\beta,\eta} C(m)$$

$$\times \frac{\sin(m\tau_{\beta,w} vT/2)}{\sin(m\tau_{\beta,w} T/2)} e^{-im(v+1)\tau_{\beta,w} T/2}, \qquad (17)$$

where normalization of $\psi_0(\theta)$ is assumed, $\int_0^{2\pi} |\psi_0(\theta)|^2 d\theta = 1$. Now, a linear growth of (17) in v can arise only if $m\tau_{\beta,w}T/2=r_m\pi$ for some $m \neq 0$, where r_m is integer; then, the contribution of the last three terms in which T appears in Eq. (17) is just equal to v. Using $\tau_{\beta,w}=\pi(2l_0\beta+l_0+w)$ in $m\tau_{\beta,w}T/2=r_m\pi$, we find that β must satisfy

$$\beta = \frac{r_m}{ml_0 T} - \frac{1}{2} - \frac{w}{2l_0} \bmod(1). \tag{18}$$

By comparing Eq. (18) with Eq. (7), in which $l=gl_0$ and $q=gq_0=g$ for some "minimal" g (see above), we see that Eq. (18) gives just a resonant value $\beta_{r,g}$ of β : m is some multiple of g (m=jg, j integer) and $r_m=j[r+l_0Tg(1-g)/2]$ for some integer r. Then, by collecting all the terms with m=jg in Eq. (17), we obtain a formula for the coefficient R in Eq. (15):

$$R = -\frac{2kg}{T} \sum_{j>0} j \operatorname{Im}[V_{jg} W_{jg,\beta,\eta} C(jg)].$$
 (19)

Thus for given resonant quasimomentum $\beta = \beta_{r,g}$, $R \neq 0$ only if there exist sufficiently high harmonics V_m and correlations C(m), with m = jg, and the sum of the corresponding terms in Eq. (19) is nonzero. These conditions are satisfied by general $V(\theta)$ and $\psi_0(\theta)$. A very simple case of R = 0 is when $V_m W_{m,\beta,\eta} C(m)$ is real for all m. This occurs, e.g., when the system is "symmetric," i.e., when both the effective potential $V_{\beta,\eta}(\theta) = \sum_m V_m W_{m,\beta,\eta} \exp(-im\theta)$ and $\psi_0(\theta)$ have a point symmetry around the *same* center, say $\theta = 0$: $V_{\beta,\eta}(-\theta) = V_{\beta,\eta}(\theta)$ and $\psi_0(-\theta) = \pm \psi_0(\theta)$ (inversion) or $\psi_0(-\theta) = \pm \psi_0(\theta)$ (inversion with time reversal); this implies that $V_m W_{m,\beta,\eta}$ and C(m) [see Eq. (16)] are both real. We emphasize that the QR quadratic behavior of $\langle \psi_{vT} | \hat{N}^2 | \psi_{vT} \rangle$ is usually not affected by such symmetries (see example below).

As an illustration, we consider the simple class of initial wave packets $\psi_0(\theta) = F[1 + A \exp(-i\theta)]$, where A is some complex constant and $F = [2\pi(1+|A|^2)]^{-1/2}$ is a normalization factor. Writing $A = |A| \exp(i\gamma)$, we see that $\psi_0(\theta)$ has a symmetry center at $\theta = \gamma$, i.e., $\psi_0^*(2\gamma - \theta) = \psi_0(\theta)$. The only nonzero correlations in Eq. (16) are C(0)=1, C(1) $=2\pi A^*F^2$, and $C(-1)=C^*(1)$. Thus $R\neq 0$ in Eq. (19) only for resonant quasimomenta $\beta = \beta_{r,g}$ with g=1; one has R $=-(2k/T)\text{Im}[V_1W_{1,\beta,\eta}C(1)]$, so that no essential generality is lost by choosing $V(\theta) = \cos(\theta)$ from now on. To obtain a more explicit expression for R, one has to evaluate $W_{1,\beta,\eta}$. Let us assume, for simplicity, that w is positive and odd and $l_0=1$, so that $l=gl_0=1$, $q=gq_0=1$ and, from Eq. (7), β $=\beta_{r,1}=r/T$, $r=0,\ldots,T-1$. For convenience, the latter set of β values will be arranged in a different order, $\beta = \beta_{r,1}$ $=rw/T \mod(1)$ [recall that (w,T) are coprime]. Then, the form factor (14) for m=1 and $\tau_{\beta} = \pi l_0 (2\beta + 1) = 2\pi rw/T + \pi$ can be exactly calculated using known results about Gauss sums [17]. We find that $W_{1,\beta,\eta} = \sqrt{TJ} \exp(i\gamma_{\beta,\eta})$, where the values of J and the phase $\gamma_{\beta,\eta}$ are listed in Table I for three different cases of T.

In Table I, $(\frac{a}{b})$ denotes the Jacobi symbol [18], so that $J = \pm 1$. The effective potential is $V_{\beta,\eta}(\theta) = \sqrt{TJ}\cos(\theta - \gamma_{\beta,\eta})$ and has a symmetry center at $\theta = \gamma_{\beta,\eta}$ i.e., $V_{\beta,\eta}(2\gamma_{\beta,\eta} - \theta) = V_{\beta,\eta}(\theta)$. We obtain from all the results above:

TABLE I. Values of J and $\gamma_{\beta,\eta}$ for $\beta = rw/T \mod(1)$, $r = 0, \dots, T-1$.

Case	J	$\gamma_{eta,\eta}$
T even	$\sqrt{2}\cos(\pi w/4) \left(\frac{2T}{w}\right)$	$\pi[r+wr^2/T+w(T-1)/4]$
$T \mod(4) = 1$	$\left(\frac{2w}{T}\right)$	$\pi(r+wr^2/T)$
$T \mod(4) = 3$	$\left(\frac{2w}{T}\right)$	$\pi(r+wr^2/T+1/2)$

$$R = \frac{k|A|J}{\sqrt{T(1+|A|^2)}}\sin(\gamma - \gamma_{\beta,\eta}). \tag{20}$$

We thus see from Eq. (20) that the noninertial nature of the free-falling frame causes <u>a</u> phase shift by $\gamma_{\beta,\eta}$ and a suppression of R by a factor of \sqrt{T} , relative to the case when gravity is absent (with T=J=1 and $\gamma_{\beta,\eta}=0$). At fixed |A|, k, and T, |R| is completely determined by the distance $\Delta \gamma = |\gamma - \gamma_{\beta,\eta}|$ between the symmetry centers of $\psi_0(\theta)$ and $V_{\beta,\eta}(\theta)$. For $\Delta \gamma = 0$, these centers coincide and R = 0; |R| is largest for $\Delta \gamma = \pi/2$, a value which may be viewed as corresponding to a "maximal asymmetry" situation. The ratchet-current direction is always given by the sign of $J \sin(\gamma - \gamma_{\beta, \eta})$, where J $=\pm 1$ depends entirely on number-theoretical features of (w,T) (see Table I). The symmetry properties do not affect the QR quadratic behavior $\langle \psi_{vT} | \hat{N}^2 | \psi_{vT} \rangle \sim 2D(vT)^2$. In fact, using $\langle \psi_{vT} | \hat{N}^2 | \psi_{vT} \rangle = \int_0^{2\pi} d\theta |d\psi_{vT}(\theta)/d\theta|^2$ and Eqs. (12) and (13), we easily find that $D=k^2/(4T)$, independent of $(\gamma, \gamma_{\beta,n}).$

In conclusion, QR can be consistently defined for the system (3) provided the rationality condition (5) is satisfied. It should be noted that $\Omega = \tau \eta/(2\pi)$ in Eq. (5) is one of the two parameters featured by the classical map which approximates (3) in the quasiclassical regime of $\tau = 2\pi l_0 + \epsilon$ [4–7] (see also the Introduction); the second parameter is a nonintegrability

one, $\tilde{k}=k|\epsilon|$. For sufficiently small \tilde{k} , there exist acceleratormode islands whose winding number ν is "locked" to the value w/T for all Ω in a small interval around $\Omega = w/T$. Wave packets initially trapped in these islands lead to the QAMs, i.e., a linear growth of $\langle \hat{N} \rangle_{vT} \approx avT$, where a $\approx 2\pi (w/T - \Omega)/\epsilon$ [4]. For $\Omega = w/T$, a = 0, but in the main-QR limit of $\epsilon \rightarrow 0$ the quasiclassical approximation must be replaced by the exact description of (3) given by the operator (8), with an exponent linear in \hat{N} . Such an evolution operator corresponds to an integrable classical map [19], in contrast with the nonintegrable quasiclassical map for $\epsilon \neq 0$, and generally gives a ratchet behavior. Thus while both a QR ratchet (15) with $\Omega = w/T$ and a QAM with $\nu = w/T$ exhibit a linear growth of $\langle \hat{N} \rangle_{vT}$, they are basically different in nature. However, one may systematically study the quasiclassical regime by using the approach introduced in this paper, namely by considering at fixed η high-order QR ratchets with rational values of $\tau/(2\pi)$ in the vicinity of integers.

It is interesting to notice that QR ratchets arise, as we have shown, even for *symmetric* potentials and wave packets, when their symmetry centers do not coincide. Using methods similar to those for $\eta=0$ [10,11], it is easy to extend our fixed- β results to the general time evolution of the kicked particle, involving a superposition of the time evolutions for all β . One then finds that the kicked particle generally exhibits no ratchet current for $\tau=2\pi l_0$. The QR quadratic behavior for $\eta=0$ is known to be robust, under small variations of τ , on some initial time interval [9]. We expect a similar robustness of the $\eta\neq 0$ quantum-resonant evolution under small variations of η and $\tau/(2\pi)$ around their rational values. Our results should then be realizable in high-precision experiments such as recent ones [20] concerning $\eta=0$ QRs.

This work was partially supported by the Israel Science Foundation (Grant No. 118/05).

- [1] M. K. Oberthaler et al., Phys. Rev. Lett. 83, 4447 (1999).
- [2] R. M. Godun *et al.*, Phys. Rev. A **62**, 013411 (2000); M. B. d'Arcy *et al.*, Phys. Rev. E **64**, 056233 (2001).
- [3] S. Schlunk et al., Phys. Rev. Lett. 90, 054101 (2003); S. Schlunk et al., ibid. 90, 124102 (2003); Z.-Y. Ma et al., ibid. 93, 164101 (2004); G. Behinaein et al., ibid. 97, 244101 (2006)
- [4] S. Fishman *et al.*, Phys. Rev. Lett. **89**, 084101 (2002); J. Stat. Phys. **110**, 911 (2003).
- [5] A. Buchleitner et al., Phys. Rev. Lett. 96, 164101 (2006).
- [6] I. Guarneri et al., Nonlinearity 19, 1141 (2006).
- [7] R. Hihinashvili et al., Physica D 226, 1 (2007).
- [8] Since Eq. (2) is translationally invariant in \hat{x} , it can be restricted to the space of Bloch functions $\varphi_{\beta}(x) = \exp(i\beta x)\psi_{\beta}(x)$ with fixed β and arbitrary 2π -periodic function $\psi_{\beta}(x)$. In fact, $\hat{H}_{f}\varphi_{\beta}(x) = \varphi'_{\beta}(x) = \exp(i\beta x)\psi'_{\beta}(x)$, where $\psi'_{\beta}(x) = \exp(i\beta x)\hat{H}_{f,\beta}\psi_{\beta}(x)$ and $\hat{H}_{f,\beta}$ is given by Eq. (2) with \hat{p} replaced by $\hat{p} + \beta$. One can interpret x in 2π -periodic functions [such as V(x), $\psi_{\beta}(x)$, and $\psi'_{\beta}(x)$] as an angle θ and \hat{p} in $\hat{H}_{f,\beta}$ as an angular-momentum operator $\hat{N} = -id/d\theta$.
- [9] S. Wimberger et al., Nonlinearity 16, 1381 (2003).

- [10] I. Dana et al., Phys. Rev. E 73, 026206 (2006).
- [11] I. Dana et al., Phys. Rev. E 74, 045201(R) (2006).
- [12] H. Schanz et al., Phys. Rev. E 71, 026228 (2005); G. Hur et al., Phys. Rev. A 72, 013403 (2005); J. Gong et al., Phys. Rev. Lett. 97, 240602 (2006).
- [13] E. Lundh *et al.*, Phys. Rev. Lett. **94**, 110603 (2005); E. Lundh, Phys. Rev. E **74**, 016212 (2006).
- [14] F. M. Izrailev, Phys. Rep. 196, 299 (1990), and references therein.
- [15] S.-J. Chang et al., Phys. Rev. A 34, 7 (1986).
- [16] B. C. Berndt et al., Gauss and Jacobi Sums (Wiley, New York, 1998).
- [17] See, e.g., Chap. 1 in Ref. [16], in particular Sec. 1.5.
- [18] The Jacobi symbol $(\frac{a}{b})$, where a and b are integers and b is positive and odd, is first defined in the case that b=l, a prime number: If l divides a (l>1), $\binom{a}{l}=0$; otherwise, $\binom{a}{l}=1$ if there exists an integer d such that l divides $a-d^2$ and $\binom{a}{l}=-1$ if such an integer does not exist. Then, if b is a product of L prime numbers not necessarily distinct, $b=l_1l_2\cdots l_L$, one defines $\binom{a}{b}=\binom{a}{l}\binom{a}{l}\cdots\binom{a}{l}\cdots\binom{a}{l}$.
- [19] M. V. Berry, Physica D 10, 369 (1984).
- [20] C. Ryu et al., Phys. Rev. Lett. 96, 160403 (2006).